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RESUMO

Este artigo propde um método para modelar barras de paredes finas com base na teoria de placas e
cascas. Com base nas disposi¢des da teoria de placas e cascas e no método semi-inverso de Saint-Venant, é
proposta uma solucdo analitica parcial de um sistema de equagobes diferenciais ndo-lineares com derivadas
parciais para calcular o estado tensao-deformagéo de placas laterais das secgdes retas das paredes finas de
guias de onda de secgdo transversal retangular sobre o efeito da carga inercial. A novidade deste artigo
consiste no fato de que o estudo realizado comprovou a razdo do comportamento de um guia de onda de
seccao transversal retangular. A novidade deste artigo consiste no fato de que o estudo realizado comprovou a
razdo do comportamento de um guia de onda de secado transversal retangular. Para alcancar os resultados
desejados, foram utilizados métodos de calculo baseados nos trabalhos de Vlasov, Bychkov e Rzhanitsyn. Os
resultados obtidos mostraram a corregao da metodologia e revelaram a necessidade de esclarecer a férmula
de Zhuravsky no calculo das tensdes tangenciais em barras de paredes finas.

Palavras-chave: barra de paredes finas, flexdo, método semi-inverso de Saint-Venant, solugdo
analitica, fungdo de Airy.

ABSTRACT

Based on the theory of plates and shells, a method of modeling thin-walled beams is proposed. Using
the tenets of the theory of plates and shells, Papkovich—-Neuber solution, as well as the Saint Venant semi-
inverse method, partial analytical solution of a system of nonlinear partial differential equations, is applied to
calculate inertial stress action on the deflected mode of lateral plates of thin-walled straight parts of waveguides
with a rectangular cross-section. The novelty of this article is in the fact that the conducted research proved the
cause of the behavior of a waveguide with rectangular cross-section. To achieve the desired results, calculation
methods were used, based on the works of Vlasov, Bychkov and Rzhanitsyn. The obtained results showed the
correctness of this technique and revealed the necessity to specify the Zhuravsky formula when calculating
shear stresses in thin-walled beams by Euler—Bernoulli beam theory.

Keywords: thin-walled beam, bending, Papkovich-Neuber solution, Saint Venant semi-inverse method,
analytical solution, Airy function.
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AHHOTALIUA

B pnaHHoM paboTte npeanaraetca cnoco® mMoaennmpoBaHUsA TOHKOCTEHHbIX CTEPXXHEN Ha OCHOBE Teopumn
nnactuH n obonoyek. Ha ocHoBe nonoxeHwn Teopuu nnactuH u obornodek n nonyobpartHoro metoaa CeH-
BeHaHa npegnaraeTcs 4acTHOe aHanUTUYecKoe pelleHne CUCTEMbl HenWHEnHbIX AunddepeHumnanbHbIX
YPaBHEHUN B YaCTHbIX MPOU3BOAHbBIX ANS pacyeTa HanpsXEHHO-OeOPMMPOBAHHOIO COCTOSHWUS BGOKOBbIX
NNacTMHOK TOHKOCTEHHbIX MPSAMbIX Y4aCTKOB BOSTHOBOAOB NMPSIMOYTrOSIbHOIO MOMEpPEeYHOro ceyeHmss Ha OencTBue
WHEPLUWOHHOTO HarpyxeHus. HoBu3Ha gaHHOW CTaTbM 3aknioyaeTcsl B TOM, YTO MPOBEAEHHOE uccrnefoBaHue
AoKasano NpuynHy NOBeAEeHUs BOMIHOBOAA NPSMOYrOfbHOIO MOMNepeYHoro ceveHns. [na JOCTWKEHNS HYXKHbIX
pe3ynbTaTOB MPUMEHSINTMCb METOAbl pacyeTa, Ha ocHoBe pabor Brnacoa, bblykoBa ¥ PxaHuubiHa.
Mony4eHHble pe3ynbTaThl NOKa3anu KOPPEKTHOCTb METOAMKNA U BbIABUNN HEOBXOAUMOCTb YTOYHEHUST OPMYbI
>KypaBckoro npu pacyeTe KacaTerbHbIX HANPSHPKEHUN B TOHKOCTEHHbIX CTEPXKHSIX.

KnioueBble cnoBa: moHKOCMEHHbIU CmepXXeHb, u3aub, nonyobpamHseiti Memod CeH-BeHaHa, aHarumu4yeckoe

peweHue, hyHKUUSI Bpu, HaMpsKEHUe.

INTRODUCTION

An analysis of deflected mode (DM) for
extensive thin-walled constructions with non-axis-
symmetrical cross-section is very complicated
and ambiguous because such constructions are
intermediate between the Euler-Bernoulli beam
theory and theory of shells (Barbosa et al., 2017;
Volmir, 1956). Verification of validity criteria of
both the above theories for thin-walled beams
gives a positive reply; however, the results of
calculations obtained with them often differ
considerably.

Application of the Euler—Bernoulli beam
theory (Feodosiev, 1999; Beer et al., 2001) leads
to excessive simplification of calculated models of
thin-walled constructions in the form of 1D
longitudinal axes having equivalent geometric
and inertial characteristics, loads and fixation
methods. This makes it possible to estimate DM
of extended thin-walled constructions with a non-
axis-symmetrical cross-section as a whole,
without taking into account the features of thin-
walled elements behavior under load (e.g., a
variation of cross-section geometry or even loss
of local stability) (Sokolov, 2002; Galanin, 2012;
Formalev et al, 2016). To remove such
shortcomings, a variety of special-purpose
approaches to the calculation of thin-walled
beams have been developed since the middle of
the twentieth century.

The simplest solution used when
calculating extensive thin-walled beams with non-
axis-symmetrical cross-section is the application
of the Euler—Bernoulli beam theory added with
adjustment  coefficients  (Agamirov,  2003).
However, the obtained results highly depend on

the choice of values of such adjustment
coefficients (Formalev et al, 2017). The
reference sources have a limited number of the
coefficient values (only for a combination of
certain forms and sizes of beam cross-section); in
other cases, their choice is rather difficult.

The calculation methods based on the
fundamental works by Vlasov (1963), Rzhanitsyn
(1982) and Bychkov (1962) are the development
of the theory of thin-walled beams with a non-
axis-symmetrical cross-section. One of the
achievements of the above works is an
estimation and taking into account depletion of
thin-walled beam cross-section in the case of
high shear stresses (e.g., at bending torsion or
joint action of bending and torsion). However, the
corrected basic dependences of beams theory
obtained in (Bychkov, 1962; Vlasov, 1963;
Rzhanitsyn, 1982) are very complicated and non-
universal; in addition, they cannot achieve the
required calculation accuracy in local areas. To
simplify calculation of thin-walled beams, Slivker
proposed the so-called half-shear theory (Slivker,
2005) in which a state of a thin-walled beam is
described within the Bernoulli-Euler shear-free
law. The grave drawback of all above-mentioned
methods of thin-walled beams calculation is that
they are based on the Euler—Bernoulli beam
theory. This cannot completely remove the
above-mentioned drawbacks inherent to it.

We propose an approach in which any
thin-walled spatial construction is a system of
separate elements (plates, shells) joined together
(Novozhilov et al, 2010; Timoshenko and
Woinowsky-Krieger, 1959; Timoshenko, 2009).
When describing DM of such a construction, a
separate local subsystem of differential equations
is built for each of its individual elements. As a
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result, we have a general global system of
equations. The complexity of the proposed
method is that it is impossible to get a general
analytical solution for such a system of differential
equations (even for thin-walled beams with a
cross-section of simple form). However, the
obtained solutions for simple cases of loading are
quite simple and can serve as a standard when
comparing.

For example, the proposed approach was
applied in (Silchenko et al., 2015; Silchenko et
al., 2010) to determine corrected stressed state
of straight part of a thin-walled waveguide with a
rectangular  cross-section. The waveguide
construction was modeled with four plates (that
formed its rectangular cross-section) and the
corresponding systems of differential equations.
The obtained analytical solution made it possible
to correct the Navier equation and determine the
values of shear stresses at pure bending, while
the performed verification in Ansys package
revealed some features in the application of finite
elements of different types.

In this work, we consider inertial loading of
a waveguide at which it is bending in the plane of
minor rigidity. Inertial loading is an inherent type
of loading for all static and moving objects under
investigation (except the cases of
weightlessness). Inertial loading of elements and
constructions occurs as a result of the action of
both their own weight and acceleration induced
by different factors (terrestrial attraction,
increasing motion, mechanical oscillations, etc.).

As a rule, taking account of inertial loading
substantially complicates the obtained analytical
dependences when calculating DM of an object,
so this is often neglected. This is favored by the
fact that the values of components of induced by
workload stresses and deformations in
constructions usually exceed (by an order of
magnitude and more) the corresponding
components due to their weight. However, in
some cases (e.g., aerospace vehicles) inertial
loading plays a decisive role. In such cases
application of simplified calculation methods may
result in large calculation errors, especially in
local sites with various (geometric and physical)
construction inhomogeneities.

Our approach will make it possible to get
more correct and exact solution which is of
importance for such critical component as a
waveguide, as well as to extend realization of the
problem of calculating lengthy thin-walled
constructions with a non-axis-symmetrical cross-

section.

It should be noted that the complete
solution for the problem of waveguide DM
determination using the theory proposed by us is
very complicated. So this work considers the first
step of solving: DM determination for lateral walls
at inertial bending with allowance made for
interaction with the rest of waveguide
construction.

METHODOLOGY

2.1. Statement of the problem

Let us consider a design diagram of a
waveguide straight section as a set of four plates
fixed by a hinge (Figure 1). The waveguide
experiences acceleration ay that results in its
bending in the XY plane of the global coordinate
system of the construction. Let the known
bending moments Mz act along the waveguide
edges to allow for waveguide interaction with
other construction elements.

According to our approach (Silchenko et al.,
2015), the waveguide construction is presented
as a set of four plates whose static, dynamic and
temperature states are described by the following
system of nonlinear differential equations
(Equation 1), where i =1, 2, 3 and 4 are the plate
numbers; Equation (2):

o, Bz, is the local coordinate system of
the i-th plate;

w, = w (., ) is the bending function for
the i-th plate;

@. =@ (a.,B.) is the Airy stress function
for stresses in the i-th plate;

are the components of

o> 9pi> 9z
surface load for the i-th plate;

E is Young's modulus; a is the coefficient
of thermal expansion; 7 is time;

t is the plate thickness; p is the plate
material density;
T,.(@.B) and T/(e,p) are the initial

and current temperature field of the i-th plate,
respectively;

D; is the bending stiffness of the ith plate
at the straight part.
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Each group of the i-th equations in the
system Egs. (1) for the straight part describes DM
of such i-th plate at whose contour all boundary
conditions are to be set. According to (Gorshkov,
2002; Neuber, 1934), the boundary conditions at
plate lateral sides are Equation (3). Let us
consider an example of obtaining analytical
solution when determining waveguide DM at
inertial bending relative to Z axis in the global
coordinate system at the plane of minimal rigidity
when maximal stresses appear. At an isothermal
loading of the straight part, the temperature
component in the first equation of system Eqs (1)

is zero: Ea-V:[T(e,B)-T,(a.8)]=0, and
there is no surface load at static loading:
qai:q/i‘i:qu:O'

As applied to the above special case of
bending, derivation of the analytical solution of
system Equation (1) is complicated by
interrelation  between  separate differential
equations as well as nonlinearity of the system as
a whole. At inertial bending of the waveguide
straight section (Figure 1a), free deformation of
its constituent plates in their transverse directions

z, is assumed. Therefore, a flat stressed state
appears in the plates, and then o, =0.

The main feature of waveguide qualitative
operation is that both sizes and form of the inner
cross-section canal have to remain practically
constant in the course of waveguide exploitation
(permissible changes of their values must not
exceed 0.1%). As applied to the calculation
procedure for the waveguide straight section,
these deformation features of plates operation
are obtained on condition that Equation (4).

In geometrical terms, the condition
Equation (3) is equivalent to the demand that the
lines forming a cross-section of the waveguide
straight section should remain direct under load.
Substitution of condition Equations (3) into
system Equations (1) and boundary condition
Equation (2) lead to their substantial
simplification; now they are as follows Equations
(5, 6).

The conducted review of the mathematical
literature showed that at present there are no
analytical solutions for systems Equations (4, 5).
A partial solution was obtained for the first time in
(Silchenko et al., 2015; Kudryavtsev et al., 2017)
when determining corrected stressed state for a
straight section of waveguide thin-walled
construction with rectangular cross-section at

pure bending. Let us apply a similar approach to
get an analytical solution to the problem of inertial
bending of lateral plates in their planes as part of
waveguide construction.

2.2. Solving the problem

To solve the considered problem of
inertial bending Equations (4, 5), let us apply the
Papkovich—Neuber solution with Saint Venant
semi-inverse method (Neuber, 1934; Papkovish,
1932; Papkovish, 1939; Parton, 1981;
Timoshenko, 1976; Aleksandrov, 1990) and
immediate determination of stresses (the Airy

function @.(c,,B)) and shiftings (bendings
wi(a,.,ﬂ,.)). As a result, we get partial solutions

for separate plates. Association of them is an
analytical solution for the considered problem of
bending of the straight section of the waveguide
as a whole.

In a case of straight section bending,
solution for the functions @.(a,B) and

@, (05,., ﬂ,.) can be built based on the DM features
for each of its i-th plate (Figure 1a):

— the lateral plates 2 and 4 experience
lateral bending in their planes;

— the plates 1 and 3 experience stretching
and compression, respectively, together with
bending in a curve formed by deformed edges of
the lateral plates 2 and 4.

As a result of the proposed approach, the
waveguide DM will be mostly determined by the
state of the lateral walls 2 and 4 for which it is
necessary to get an analytical solution as the Airy

functions @.(c., B) in the system Equation (1).

2.3. Determination of lateral plate stresses

Let us consider the lateral plate 2 that is
bending under its own weight as a part of the
waveguide construction (Figure 2). Besides its
own specific weight ¥, a shear stress 2"2 at the
junctures with the plates 1 and 3 as well as
distributed stress from pressure o, will act on its
upper and lower sides. A design diagram for the
dedicated plate 2 made with allowance for its
interaction with the rest rejected part of
waveguide construction is shown in Figure 2.

Taking into consideration all the features
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of loading, let us assume that the Airy function
o, (Ot,.,ﬂi) for plate 2 is a fifth-degree polynomial
(Papkovish, 1939; Aleksandrov, 1990) (Equation
(7). In this case, the expressions for stresses that
determine DM of the plate 2 are based on the
known dependences of the Airy equations; with
allowance for the inertial forces, they are
Equation (8, 9, 10).

Let us obtain coefficients in the polynomial
Equation (7) by substituting this expression in the
boundary conditions at the sides of plate 2.
Interaction of the lateral plate 2 with the upper
and lower plates 1 and 3 occur at its upper and
lower sides where the shear stresses are
Equation (11). The second boundary condition
determines the values of normal stresses o, due

to the pressure of the plates 1 and 3 on the plate
2 at their junctures (Equation 12). The third
boundary condition determines the value of the

bending moment M,, along the edges of the
waveguide straight section which is taken as
integral value distribution of normal stresses o,

along the height of cross-section for the lateral
plate 2. For the adopted design diagram of the
waveguide (Figure 1), this boundary condition is
Equation (13).

After substituting Equation (7) in the
conditions Equations (8-10), we get the required
coefficients in the Airy function (Equations 14-17).
Equations (7) with coefficients Equation (11)
completely determine the stressed state in the
lateral plate 2 of the waveguide at its inertial
loading. Owing to the symmetry of the waveguide
construction geometry as well as conditions of its
fixation and loading, the solution Equations (7,
11) will be also true for plate 4.

2.4. Determination of lateral plate deformations

We determine a deformed state of the
plate 2 based on the Airy function using the
Papkovich procedure (Neuber, 1934; Papkovish,
1932; Papkovish, 1939). Let us present the Airy
function as Equation (18), where Equation (19).
According to (Neuber, 1934; Papkovish, 1932;
Papkovish, 1939), the plate shiftings are as
follows: Equation (20, 21), where Equation (22).
After substitution and cancellations, we get
longitudinal shiftings as Equation (23), where
Equations (24-26). The transversal shiftings are
as follows: Equation (27), where Equations (28-
33).

According to the accepted assumption
Equation (3), bending of the plate 2 will be zero
(Equation 34). The obtained Equations (13-15)
completely determine the deformed state of the
lateral plate 2 as well as of the plate 4 of the
waveguide at its inertial loading.

CALCULATIONS:

To check the correctness of the obtained
expressions, we calculated DM of the waveguide
as a whole and its lateral plates of sizes: L = 400
m, H = 0.0174 mm, B = 0.0374 mm and t =
0.0012 mm (Figure 1). The waveguide material
was AD31 aluminum alloy. The waveguide was
fixed with a simple articulated support; for the
sake of simplicity, the initial bending moments
along the waveguide section edges were taken to

be zero: M,,=0. The acceleration ay = 200
m/s? was set as external load.

At the first stage, waveguide stresses and
deformations were calculated by applying the
Euler—Bernoulli beam theory. Then the obtained
results were used as boundary conditions at
marking out the plate 2 (Figure 2). Further
calculating DM of plate 2 was performed using
the obtained dependences Equations (7, 11, 13-
15).

3.1. Waveguide calculation by the Euler-Bernoulli
beam theory

The calculation of waveguide as a whole
was performed according to the Euler—Bernoulli
beam theory. The normal stresses were
calculated from  the  Navier  equation
(Timoshenko, 1976) (Equation 35). The shear
stresses were calculated from the Zhuravsky
shear stress formula (Feodosiev, 1999; Beer et
al., 2001; Kecman, 1983) that in the case of
waveguide under study is Equation (36, 37). In
the beam model, the deformed state of
waveguide was determined using the universal
Krylov equation (Feodosiev, 1999; Beer et al,
2001) that in our case of loading is Equation (38).

The maximal bending is in the middle of
the waveguide beam model (Equation 39). The
results of waveguide computation according to
the Euler—Bernoulli beam theory are given in
summary Table 1.

3.2. Calculation of waveguide lateral plate 2
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According to the proposed procedure, let
us assign the lateral plate 2 of the waveguide,
apply the corresponding actions to its lateral
boundaries (Figure 2) and perform the refined
calculation of its DM:

1) The shear stress 7, calculated from

Equation (17) is applied over the upper and lower
plate sides;

2) The pressure of the plates 1 and 3 on
the plate 2 at their junctures as normal stresses
o, calculated as Equation (40) (where y is the

specific weight) is determined as Equation (41).

The calculated weight pressure of the
upper (1) and lower (3) plates is o,= 9526 Pa.

The shear stress 7, at lateral sides of the plates 2

and 4 were obtained by calculating waveguide as a
whole from the Zhuravsky formula (known from the

Euler—Bernoulli beam theory) and are T'2= 1.6

MPa (Figure 2). The results of computing lateral
plate 2 of the waveguide from the obtained
dependences Equations (7, 11, 13-15) are given
in summary Table 1.

RESULTS AND DISCUSSION:

The main results of calculating stresses
and deformations according to the Euler—
Bernoulli beam theory and to the proposed
procedures as well as their comparison are given
in Table 1. The graphics results are presented in
Figures 3-6. The obtained results of calculating
DM for plate 2 and waveguide as a whole
confirmed the reasonableness of the proposed
procedures for modeling thin-walled beams as a
set of plates. A comparison between the results of
calculating stresses and deformations according
to the Euler-Bernoulli beam theory and to the
proposed procedures showed rather big (up to
14%) discrepancy (see Table 1).

The performed analysis revealed a strong
dependence of DM parameters of the plate 2 on
the preset shear stresses 7'2 at the junctures with
the plates 1 and 3 (Figure 2). Investigation of
O ,,uix\T,) leads to the following expression
(Equation (42). By substituting the used
waveguide sizes, we get Equation (43).

The 7, value is taken from calculating

waveguide as a beam by the Zhuravsky formula.
It is evident that application of the same formula

to a thin-walled waveguide construction with non-
axis-symmetrical cross-section results in a certain

inaccuracy in determination of 7, value.
According to Equations (22, 23), this leads to
distortion of stress o,, and other DM parameters

of the plate 2 (Table 1). So it is necessary to
justify a range of applicability of the Zhuravsky
formula and reveal the ways to refine the

obtained values of shear stresses 7, for thin-

walled beams. This is the next stage of the
present work after which it will be possible to start
estimating DM of the waveguide as a whole.

CONCLUSIONS:

In this work was considered a way for
modeling thin-walled beams with a rectangular
cross-section. An analysis of deflected mode for
extensive thin-walled constructions with non-axis-
symmetrical cross-section is very complicated
and ambiguous. A new approach was proposed,
in which any thin-walled spatial construction is a
system of separate elements (plates, shells)
joined together. A waveguide presented as a set
of plates and subjected to inertial loading served
as an example. This approach made it possible to
get more correct and exact solution which is of
importance for such critical component as a
waveguide, as well as to extend realization of the
problem of calculating lengthy thin-walled
constructions with a non-axis-symmetrical cross-
section.

In this paper, only the first part of the
solution was presented, because the complete
solution for the problem of waveguide DM
determination, using the theory was proposed, is
very complicated. At the first stage of
calculations, we studied deflected mode of a
lateral plate 2 whose behavior appreciably
determined the state of the waveguide as a
whole. The obtained results of calculating DM for
plate 2 and waveguide as a whole confirmed the
reasonableness of the proposed procedures for
modeling thin-walled beams as a set of plates.

The final results confirmed the
correctness of the applied approach and directed
the lines of further investigations.
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microelectromechanical drives for systems of
solar battery openings of space vehicles with a
life of more than 15 years”.
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Figure 1. Design model of waveguide straight section.
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Figure 2. Design model for a lateral plate of the waveguide.
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Figure 3. Diagram of longitudinal stresses o, (az, ,6’2) changing: gradually along plate
2 length and stepwise (in fractions) along plate 2 height (from zero to one half-height).
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Figure 4. Diagram of transversal stresses o 4, (052 , ﬂz) changing gradually along plate
2 height (there is no changing along plate 2 length).
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Figure 5. Diagram of shear stresses 7, ;, (a2 B, ) changing gradually along plate 2
height and stepwise (in fractions) along plate 2 length (from its middle zero to the end

one).
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Figure 6. Diagram of transversal shifting v, (042, ,82) gradually along plate 2 length and
stepwise (in fractions) along plate 2 height (from zero to one half-height).
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Table 1. Results of waveguide DM calculation.

o X =
Parameter XMAX( 2

h

Zy=
, Pa

ht x=0,y=0) _ h L

Pa

, Pa , M

Values
from the
Euler—
Bernoulli
beam
theory

1716 629.3

380 614.9

—4.975E-05

321 009.7

Values
from the
proposed
procedure

1 864 621.556

386 745.3

—4.271E-05

Departures

7.9%

1.8%

- 14%
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