
 

PERIÓDICO TCHÊ QUÍMICA • WWW.PERIODICO.TCHEQUIMICA.COM • VOL 15. SPECIAL ISSUE 1 
• ISSN 1806-0374 (impresso) • ISSN 1806-9827 (CD-ROM) • ISSN 2179-0302 (meio eletrônico) 

 
©

 
2018. Porto Alegre, RS. Brasil

 
41

 

FLEXÃO INERCIAL DE UMA GUIA DE ONDAS COM PAREDES 
FINAS DE SECÇÃO TRANSVERSAL RETANGULAR: FLEXÃO DA 

PAREDE LATERAL EM SEU PLANO 
 

INERTIAL BENDING OF A THIN-WALLED WAVEGUIDE WITH 
RECTANGULAR CROSS-SECTION: BENDING OF LATERAL WALL IN ITS PLANE 

 
ИНЕРЦИОННЫЙ ИЗГИБ ТОНКОСТЕННОГО ВОЛНОВОДА ПРЯМОУГОЛЬНОГО 
ПОПЕРЕЧНОГО СЕЧЕНИЯ: ИЗГИБ БОКОВОЙ СТЕНКИ В СВОЕЙ ПЛОСКОСТИ 

 
KUDRYAVTSEV, Ilya V.1*; NOVIKOV, Evgeniy S.2; RABETSKAYA, Olga I.3; MITYAEV, 

Alexander E.4; DEMIN, Vadim G.5 

 
1,2,3,4,5 Siberian Federal University, Department of Applied Mechanics, 79 Svobodniy Ave., zip code 660041, 

Krasnoyarsk – Russian Federation 
(phone: + 89029618814) 

 
* Corresponding author 

e-mail: ikudryavcev@sfu-kras.ru 
 

Received 16 July 2017; received in revised form 01 November 2018; accepted 20 November 2018 

 
 
RESUMO 
 

Este artigo propõe um método para modelar barras de paredes finas com base na teoria de placas e 
cascas. Com base nas disposições da teoria de placas e cascas e no método semi-inverso de Saint-Venant, é 
proposta uma solução analítica parcial de um sistema de equações diferenciais não-lineares com derivadas 
parciais para calcular o estado tensão-deformação de placas laterais das secções retas das paredes finas de 
guias de onda de secção transversal retangular sobre o efeito da carga inercial. A novidade deste artigo 
consiste no fato de que o estudo realizado comprovou a razão do comportamento de um guia de onda de 
secção transversal retangular. A novidade deste artigo consiste no fato de que o estudo realizado comprovou a 
razão do comportamento de um guia de onda de seção transversal retangular. Para alcançar os resultados 
desejados, foram utilizados métodos de cálculo baseados nos trabalhos de Vlasov, Bychkov e Rzhanitsyn. Os 
resultados obtidos mostraram a correção da metodologia e revelaram a necessidade de esclarecer a fórmula 
de Zhuravsky no cálculo das tensões tangenciais em barras de paredes finas. 
 
Palavras-chave: barra de paredes finas, flexão, método semi-inverso de Saint-Venant, solução 
analítica, função de Airy. 
 
ABSTRACT 
 
 Based on the theory of plates and shells, a method of modeling thin-walled beams is proposed. Using 
the tenets of the theory of plates and shells, Papkovich–Neuber solution, as well as the Saint Venant semi-
inverse method, partial analytical solution of a system of nonlinear partial differential equations, is applied to 
calculate inertial stress action on the deflected mode of lateral plates of thin-walled straight parts of waveguides 
with a rectangular cross-section. The novelty of this article is in the fact that the conducted research proved the 
cause of the behavior of a waveguide with rectangular cross-section. To achieve the desired results, calculation 
methods were used, based on the works of Vlasov, Bychkov and Rzhanitsyn. The obtained results showed the 
correctness of this technique and revealed the necessity to specify the Zhuravsky formula when calculating 
shear stresses in thin-walled beams by Euler–Bernoulli beam theory. 
 
Keywords: thin-walled beam, bending, Papkovich-Neuber solution, Saint Venant semi-inverse method, 
analytical solution, Airy function. 
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АННОТАЦИЯ 
 
 В данной работе предлагается способ моделирования тонкостенных стержней на основе теории 
пластин и оболочек. На основе положений теории пластин и оболочек и полуобратного метода Сен-
Венана предлагается частное аналитическое решение системы нелинейных дифференциальных 
уравнений в частных производных для расчета напряжённо-деформированного состояния боковых 
пластинок тонкостенных прямых участков волноводов прямоугольного поперечного сечения на действие 
инерционного нагружения. Новизна данной статьи заключается в том, что проведенное исследование 
доказало причину поведения волновода прямоугольного поперечного сечения. Для достижения нужных 
результатов применялись методы расчета, на основе работ Власова, Бычкова и Ржаницына. 
Полученные результаты показали корректность методики и выявили необходимость уточнения формулы 
Журавского при расчете касательных напряжений в тонкостенных стержнях. 
 
Ключевые слова: тонкостенный стержень, изгиб, полуобратный метод Сен-Венана, аналитическое 
решение, функция Эри, напряжение. 
 
 
 
INTRODUCTION 
 
 An analysis of deflected mode (DM) for 
extensive thin-walled constructions with non-axis-
symmetrical cross-section is very complicated 
and ambiguous because such constructions are 
intermediate between the Euler-Bernoulli beam 
theory and theory of shells (Barbosa et al., 2017; 
Volmir, 1956). Verification of validity criteria of 
both the above theories for thin-walled beams 
gives a positive reply; however, the results of 
calculations obtained with them often differ 
considerably. 

 Application of the Euler–Bernoulli beam 
theory (Feodosiev, 1999; Beer et al., 2001) leads 
to excessive simplification of calculated models of 
thin-walled constructions in the form of 1D 
longitudinal axes having equivalent geometric 
and inertial characteristics, loads and fixation 
methods. This makes it possible to estimate DM 
of extended thin-walled constructions with a non-
axis-symmetrical cross-section as a whole, 
without taking into account the features of thin-
walled elements behavior under load (e.g., a 
variation of cross-section geometry or even loss 
of local stability) (Sokolov, 2002; Galanin, 2012; 
Formalev et al., 2016). To remove such 
shortcomings, a variety of special-purpose 
approaches to the calculation of thin-walled 
beams have been developed since the middle of 
the twentieth century. 

 The simplest solution used when 
calculating extensive thin-walled beams with non-
axis-symmetrical cross-section is the application 
of the Euler–Bernoulli beam theory added with 
adjustment coefficients (Agamirov, 2003). 
However, the obtained results highly depend on 

the choice of values of such adjustment 
coefficients (Formalev et al., 2017). The 
reference sources have a limited number of the 
coefficient values (only for a combination of 
certain forms and sizes of beam cross-section); in 
other cases, their choice is rather difficult. 

 The calculation methods based on the 
fundamental works by Vlasov (1963), Rzhanitsyn 
(1982) and Bychkov (1962) are the development 
of the theory of thin-walled beams with a non-
axis-symmetrical cross-section. One of the 
achievements of the above works is an 
estimation and taking into account depletion of 
thin-walled beam cross-section in the case of 
high shear stresses (e.g., at bending torsion or 
joint action of bending and torsion). However, the 
corrected basic dependences of beams theory 
obtained in (Bychkov, 1962; Vlasov, 1963; 
Rzhanitsyn, 1982) are very complicated and non-
universal; in addition, they cannot achieve the 
required calculation accuracy in local areas. To 
simplify calculation of thin-walled beams, Slivker 
proposed the so-called half-shear theory (Slivker, 
2005) in which a state of a thin-walled beam is 
described within the Bernoulli-Euler shear-free 
law. The grave drawback of all above-mentioned 
methods of thin-walled beams calculation is that 
they are based on the Euler–Bernoulli beam 
theory. This cannot completely remove the 
above-mentioned drawbacks inherent to it. 

 We propose an approach in which any 
thin-walled spatial construction is a system of 
separate elements (plates, shells) joined together 
(Novozhilov et al., 2010; Timoshenko and 
Woinowsky-Krieger, 1959; Timoshenko, 2009). 
When describing DM of such a construction, a 
separate local subsystem of differential equations 
is built for each of its individual elements. As a 
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result, we have a general global system of 
equations. The complexity of the proposed 
method is that it is impossible to get a general 
analytical solution for such a system of differential 
equations (even for thin-walled beams with a 
cross-section of simple form). However, the 
obtained solutions for simple cases of loading are 
quite simple and can serve as a standard when 
comparing. 

 For example, the proposed approach was 
applied in (Silchenko et al., 2015; Silchenko et 
al., 2010) to determine corrected stressed state 
of straight part of a thin-walled waveguide with a 
rectangular cross-section. The waveguide 
construction was modeled with four plates (that 
formed its rectangular cross-section) and the 
corresponding systems of differential equations. 
The obtained analytical solution made it possible 
to correct the Navier equation and determine the 
values of shear stresses at pure bending, while 
the performed verification in Ansys package 
revealed some features in the application of finite 
elements of different types. 

 In this work, we consider inertial loading of 
a waveguide at which it is bending in the plane of 
minor rigidity. Inertial loading is an inherent type 
of loading for all static and moving objects under 
investigation (except the cases of 
weightlessness). Inertial loading of elements and 
constructions occurs as a result of the action of 
both their own weight and acceleration induced 
by different factors (terrestrial attraction, 
increasing motion, mechanical oscillations, etc.). 

 As a rule, taking account of inertial loading 
substantially complicates the obtained analytical 
dependences when calculating DM of an object, 
so this is often neglected. This is favored by the 
fact that the values of components of induced by 
workload stresses and deformations in 
constructions usually exceed (by an order of 
magnitude and more) the corresponding 
components due to their weight. However, in 
some cases (e.g., aerospace vehicles) inertial 
loading plays a decisive role. In such cases 
application of simplified calculation methods may 
result in large calculation errors, especially in 
local sites with various (geometric and physical) 
construction inhomogeneities. 

 Our approach will make it possible to get 
more correct and exact solution which is of 
importance for such critical component as a 
waveguide, as well as to extend realization of the 
problem of calculating lengthy thin-walled 
constructions with a non-axis-symmetrical cross-

section. 

 It should be noted that the complete 
solution for the problem of waveguide DM 
determination using the theory proposed by us is 
very complicated. So this work considers the first 
step of solving: DM determination for lateral walls 
at inertial bending with allowance made for 
interaction with the rest of waveguide 
construction. 

 
METHODOLOGY 
 
2.1. Statement of the problem 
 
 Let us consider a design diagram of a 
waveguide straight section as a set of four plates 
fixed by a hinge (Figure 1). The waveguide 
experiences acceleration aY that results in its 
bending in the XY plane of the global coordinate 
system of the construction. Let the known 
bending moments MZ0 act along the waveguide 
edges to allow for waveguide interaction with 
other construction elements. 
 According to our approach (Silchenko et al., 
2015), the waveguide construction is presented 
as a set of four plates whose static, dynamic and 
temperature states are described by the following 
system of nonlinear differential equations 
(Equation 1), where i = 1, 2, 3 and 4 are the plate 
numbers; Equation (2): 

 iii zβα  is the local coordinate system of 

the i-th plate; 

 ( )iiii βαωω ,=  is the bending function for 

the i-th plate; 

 ( )iiii βαϕϕ ,=  is the Airy stress function 

for stresses in the i-th plate; 

 Ziii qqq ,,
βα

 are the components of 

surface load for the i-th plate; 

 Е is Young's modulus; α is the coefficient 
of thermal expansion; τ  is time; 

 t is the plate thickness; ρ  is the plate 
material density; 

 ( )iii
T βα ,

0  and ( )iiiT βα ,  are the initial 

and current temperature field of the i-th plate, 
respectively; 

 Di is the bending stiffness of the i-th plate 
at the straight part. 
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 Each group of the i-th equations in the 
system Eqs. (1) for the straight part describes DM 
of such i-th plate at whose contour all boundary 
conditions are to be set. According to (Gorshkov, 
2002; Neuber, 1934), the boundary conditions at 
plate lateral sides are Equation (3). Let us 
consider an example of obtaining analytical 
solution when determining waveguide DM at 
inertial bending relative to Z axis in the global 
coordinate system at the plane of minimal rigidity 
when maximal stresses appear. At an isothermal 
loading of the straight part, the temperature 
component in the first equation of system Eqs (1) 
is zero: ( ) ( )[ ] 0,,

0

2
=−∇⋅ iiiiii TTE βαβαα , and 

there is no surface load at static loading: 
0=== Ziii qqq

βα

.  

 As applied to the above special case of 
bending, derivation of the analytical solution of 
system Equation (1) is complicated by 
interrelation between separate differential 
equations as well as nonlinearity of the system as 
a whole. At inertial bending of the waveguide 
straight section (Figure 1a), free deformation of 
its constituent plates in their transverse directions 

iz  is assumed. Therefore, a flat stressed state 

appears in the plates, and then 0=Ziσ . 

 The main feature of waveguide qualitative 
operation is that both sizes and form of the inner 
cross-section canal have to remain practically 
constant in the course of waveguide exploitation 
(permissible changes of their values must not 
exceed 0.1%). As applied to the calculation 
procedure for the waveguide straight section, 
these deformation features of plates operation 
are obtained on condition that Equation (4).  

 In geometrical terms, the condition 
Equation (3) is equivalent to the demand that the 
lines forming a cross-section of the waveguide 
straight section should remain direct under load. 
Substitution of condition Equations (3) into 
system Equations (1) and boundary condition 
Equation (2) lead to their substantial 
simplification; now they are as follows Equations 
(5, 6). 

 The conducted review of the mathematical 
literature showed that at present there are no 
analytical solutions for systems Equations (4, 5). 
A partial solution was obtained for the first time in 
(Silchenko et al., 2015; Kudryavtsev et al., 2017) 
when determining corrected stressed state for a 
straight section of waveguide thin-walled 
construction with rectangular cross-section at 

pure bending. Let us apply a similar approach to 
get an analytical solution to the problem of inertial 
bending of lateral plates in their planes as part of 
waveguide construction. 

 
2.2. Solving the problem 
 
 To solve the considered problem of 
inertial bending Equations (4, 5), let us apply the 
Papkovich–Neuber solution with Saint Venant 
semi-inverse method (Neuber, 1934; Papkovish, 
1932; Papkovish, 1939; Parton, 1981; 
Timoshenko, 1976; Aleksandrov, 1990) and 
immediate determination of stresses (the Airy 
function ( )iii βαϕ , ) and shiftings (bendings 

( )iii βαω , ). As a result, we get partial solutions 

for separate plates. Association of them is an 
analytical solution for the considered problem of 
bending of the straight section of the waveguide 
as a whole. 

 In a case of straight section bending, 
solution for the functions ( )iii βαϕ ,  and 

( )iii βαω ,  can be built based on the DM features 

for each of its i-th plate (Figure 1a): 

 – the lateral plates 2 and 4 experience 
lateral bending in their planes; 

 – the plates 1 and 3 experience stretching 
and compression, respectively, together with 
bending in a curve formed by deformed edges of 
the lateral plates 2 and 4. 

 As a result of the proposed approach, the 
waveguide DM will be mostly determined by the 
state of the lateral walls 2 and 4 for which it is 
necessary to get an analytical solution as the Airy 
functions ( )iii βαϕ ,  in the system Equation (1). 

 
2.3. Determination of lateral plate stresses 
 
 Let us consider the lateral plate 2 that is 
bending under its own weight as a part of the 
waveguide construction (Figure 2). Besides its 

own specific weight γ , a shear stress '

2
τ  at the 

junctures with the plates 1 and 3 as well as 
distributed stress from pressure 

Rσ  will act on its 
upper and lower sides. A design diagram for the 
dedicated plate 2 made with allowance for its 
interaction with the rest rejected part of 
waveguide construction is shown in Figure 2. 

 Taking into consideration all the features 



 

PERIÓDICO TCHÊ QUÍMICA • WWW.PERIODICO.TCHEQUIMICA.COM • VOL 15. SPECIAL ISSUE 1 
• ISSN 1806-0374 (impresso) • ISSN 1806-9827 (CD-ROM) • ISSN 2179-0302 (meio eletrônico) 

 © 2018. Porto Alegre, RS. Brasil 45 

of loading, let us assume that the Airy function 
( )iii βαϕ ,  for plate 2 is a fifth-degree polynomial 

(Papkovish, 1939; Aleksandrov, 1990) (Equation 
(7). In this case, the expressions for stresses that 
determine DM of the plate 2 are based on the 
known dependences of the Airy equations; with 
allowance for the inertial forces, they are 
Equation (8, 9, 10). 

 Let us obtain coefficients in the polynomial 
Equation (7) by substituting this expression in the 
boundary conditions at the sides of plate 2. 
Interaction of the lateral plate 2 with the upper 
and lower plates 1 and 3 occur at its upper and 
lower sides where the shear stresses are 
Equation (11). The second boundary condition 
determines the values of normal stresses 

Rσ  due 
to the pressure of the plates 1 and 3 on the plate 
2 at their junctures (Equation 12). The third 
boundary condition determines the value of the 
bending moment 0ZM  along the edges of the 

waveguide straight section which is taken as 
integral value distribution of normal stresses 2α

σ  

along the height of cross-section for the lateral 
plate 2. For the adopted design diagram of the 
waveguide (Figure 1), this boundary condition is 
Equation (13). 

 After substituting Equation (7) in the 
conditions Equations (8-10), we get the required 
coefficients in the Airy function (Equations 14-17). 
Equations (7) with coefficients Equation (11) 
completely determine the stressed state in the 
lateral plate 2 of the waveguide at its inertial 
loading. Owing to the symmetry of the waveguide 
construction geometry as well as conditions of its 
fixation and loading, the solution Equations (7, 
11) will be also true for plate 4. 

 
2.4. Determination of lateral plate deformations 
 
 We determine a deformed state of the 
plate 2 based on the Airy function using the 
Papkovich procedure (Neuber, 1934; Papkovish, 
1932; Papkovish, 1939). Let us present the Airy 
function as Equation (18), where Equation (19). 
According to (Neuber, 1934; Papkovish, 1932; 
Papkovish, 1939), the plate shiftings are as 
follows: Equation (20, 21), where Equation (22). 
After substitution and cancellations, we get 
longitudinal shiftings as Equation (23), where 
Equations (24-26). The transversal shiftings are 
as follows: Equation (27), where Equations (28-
33). 

 According to the accepted assumption 
Equation (3), bending of the plate 2 will be zero 
(Equation 34). The obtained Equations (13-15) 
completely determine the deformed state of the 
lateral plate 2 as well as of the plate 4 of the 
waveguide at its inertial loading. 

 
CALCULATIONS: 
 
 To check the correctness of the obtained 
expressions, we calculated DM of the waveguide 
as a whole and its lateral plates of sizes: L = 400 
m, H = 0.0174 mm, B = 0.0374 mm and t = 
0.0012 mm (Figure 1). The waveguide material 
was AD31 aluminum alloy. The waveguide was 
fixed with a simple articulated support; for the 
sake of simplicity, the initial bending moments 
along the waveguide section edges were taken to 
be zero: 0

0
=ZM . The acceleration aY = 200 

m/s2 was set as external load. 

 At the first stage, waveguide stresses and 
deformations were calculated by applying the 
Euler–Bernoulli beam theory. Then the obtained 
results were used as boundary conditions at 
marking out the plate 2 (Figure 2). Further 
calculating DM of plate 2 was performed using 
the obtained dependences Equations (7, 11, 13-
15). 

 
3.1. Waveguide calculation by the Euler-Bernoulli 
beam theory 
 
 The calculation of waveguide as a whole 
was performed according to the Euler–Bernoulli 
beam theory. The normal stresses were 
calculated from the Navier equation 
(Timoshenko, 1976) (Equation 35). The shear 
stresses were calculated from the Zhuravsky 
shear stress formula (Feodosiev, 1999; Beer et 
al., 2001; Kecman, 1983) that in the case of 
waveguide under study is Equation (36, 37). In 
the beam model, the deformed state of 
waveguide was determined using the universal 
Krylov equation (Feodosiev, 1999; Beer et al., 
2001) that in our case of loading is Equation (38). 

 The maximal bending is in the middle of 
the waveguide beam model (Equation 39). The 
results of waveguide computation according to 
the Euler–Bernoulli beam theory are given in 
summary Table 1. 

 
3.2. Calculation of waveguide lateral plate 2 
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 According to the proposed procedure, let 
us assign the lateral plate 2 of the waveguide, 
apply the corresponding actions to its lateral 
boundaries (Figure 2) and perform the refined 
calculation of its DM: 

 1) The shear stress '

2
τ  calculated from 

Equation (17) is applied over the upper and lower 
plate sides; 

 2) The pressure of the plates 1 and 3 on 
the plate 2 at their junctures as normal stresses 

Rσ  calculated as Equation (40) (where γ  is the 
specific weight) is determined as Equation (41). 

 The calculated weight pressure of the 
upper (1) and lower (3) plates is 

Rσ = 9526 Pa. 

The shear stress '

2
τ  at lateral sides of the plates 2 

and 4 were obtained by calculating waveguide as a 
whole from the Zhuravsky formula (known from the 

Euler–Bernoulli beam theory) and are '

2
τ = 1.6 

MPa (Figure 2). The results of computing lateral 
plate 2 of the waveguide from the obtained 
dependences Equations (7, 11, 13-15) are given 
in summary Table 1. 

 
RESULTS AND DISCUSSION: 
 
 The main results of calculating stresses 
and deformations according to the Euler–
Bernoulli beam theory and to the proposed 
procedures as well as their comparison are given 
in Table 1. The graphics results are presented in 
Figures 3-6. The obtained results of calculating 
DM for plate 2 and waveguide as a whole 
confirmed the reasonableness of the proposed 
procedures for modeling thin-walled beams as a 
set of plates. A comparison between the results of 
calculating stresses and deformations according 
to the Euler–Bernoulli beam theory and to the 
proposed procedures showed rather big (up to 
14%) discrepancy (see Table 1). 

 The performed analysis revealed a strong 
dependence of DM parameters of the plate 2 on 

the preset shear stresses '

2
τ  at the junctures with 

the plates 1 and 3 (Figure 2). Investigation of 
( )

'

22
τσ

α MAX  leads to the following expression 

(Equation (42). By substituting the used 
waveguide sizes, we get Equation (43). 

 The '

2
τ  value is taken from calculating 

waveguide as a beam by the Zhuravsky formula. 
It is evident that application of the same formula 

to a thin-walled waveguide construction with non-
axis-symmetrical cross-section results in a certain 

inaccuracy in determination of '

2
τ  value. 

According to Equations (22, 23), this leads to 
distortion of stress 2α

σ  and other DM parameters 

of the plate 2 (Table 1). So it is necessary to 
justify a range of applicability of the Zhuravsky 
formula and reveal the ways to refine the 

obtained values of shear stresses '

2
τ  for thin-

walled beams. This is the next stage of the 
present work after which it will be possible to start 
estimating DM of the waveguide as a whole. 

 
CONCLUSIONS: 
 
 In this work was considered a way for 
modeling thin-walled beams with a rectangular 
cross-section. An analysis of deflected mode for 
extensive thin-walled constructions with non-axis-
symmetrical cross-section is very complicated 
and ambiguous. A new approach was proposed, 
in which any thin-walled spatial construction is a 
system of separate elements (plates, shells) 
joined together. A waveguide presented as a set 
of plates and subjected to inertial loading served 
as an example. This approach made it possible to 
get more correct and exact solution which is of 
importance for such critical component as a 
waveguide, as well as to extend realization of the 
problem of calculating lengthy thin-walled 
constructions with a non-axis-symmetrical cross-
section. 
 In this paper, only the first part of the 
solution was presented, because the complete 
solution for the problem of waveguide DM 
determination, using the theory was proposed, is 
very complicated. At the first stage of 
calculations, we studied deflected mode of a 
lateral plate 2 whose behavior appreciably 
determined the state of the waveguide as a 
whole. The obtained results of calculating DM for 
plate 2 and waveguide as a whole confirmed the 
reasonableness of the proposed procedures for 
modeling thin-walled beams as a set of plates. 
 The final results confirmed the 
correctness of the applied approach and directed 
the lines of further investigations. 
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a) design model of waveguide  b) waveguide cross-section 

 
Figure 1. Design model of waveguide straight section. 

 
 
 
 

 
 

Figure 2. Design model for a lateral plate of the waveguide. 
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Figure 3. Diagram of longitudinal stresses ( )
222

, βασ
α

 changing: gradually along plate 

2 length and stepwise (in fractions) along plate 2 height (from zero to one half-height). 
 
 
 
 
 

 
 

Figure 4. Diagram of transversal stresses ( )
222

, βασ
β

 changing gradually along plate 

2 height (there is no changing along plate 2 length). 
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Figure 5. Diagram of shear stresses ( )
2222

, βατ
βα

 changing gradually along plate 2 

height and stepwise (in fractions) along plate 2 length (from its middle zero to the end 
one). 

 
 
 
 

 
 

Figure 6. Diagram of transversal shifting ( )
222

, βαv  gradually along plate 2 length and 

stepwise (in fractions) along plate 2 height (from zero to one half-height). 
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Table 1. Results of waveguide DM calculation. 
 

Parameter 



==

2
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== yxMAXYτ

, 
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
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2
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L
xu MAXy

, m 
Values 

from the 
Euler–

Bernoulli 
beam 
theory 

1 716 629.3 380 614.9 

321 009.7 

−4.975E-05 

Values 
from the 
proposed 
procedure 

1 864 621.556 386 745.3 −4.271E-05 

Departures 7.9% 1.8% - 14% 
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