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RESUMO 
 

Em posições dinâmicas e quase-estáticas, o problema da deformação não-estacionária de uma estrutura 
de lajes finas estendida, que é presa a uma superfície rígida, é resolvido no processo de aplicação de uma 
carga adicional. O compartimento da estrutura estendida é modelado por meio de uma viga. As propriedades 
do revestimento de proteção de calor estão incluídas na equação de oscilações de flexão da viga através de 
forças inerciais. O trabalho descreve os danos locais usando funções genéricas. A carga móvel é simulada por 
uma força linear infinitamente distribuída uniformemente que se move ao longo da viga com uma velocidade 
constante. Como resultado, as forças inerciais têm uma estrutura mais complexa do que na formulação 
clássica. O problema é reduzido à equação diferencial de oscilações de flexão da viga em derivadas parciais. A 
velocidade da carga é incluída na equação como um parâmetro. Para a solução, utiliza-se o método de 
Bubnov, segundo o qual a deflexão de uma viga é representada como uma série de determinadas funções 
coordenadas com coeficientes desconhecidos, que são considerados como coordenadas generalizadas. 
Utilizando os métodos de experimento computacional, foi investigada a possibilidade de reduzir os valores 
máximos de aceleração em determinados pontos dos sistemas aeroespaciais sob a influência de diferentes 
cargas estáticas e dinâmicas. A velocidade crítica de movimento da carga foi calculada. 
 
Palavras-chave: estrutura de lajes finas, fixadores, modelo dinâmico simplificado, experimento computacional, 
velocidade crítica de movimento. 
 
ABSTRACT 
 
 In dynamic and quasistatic positions the problem on nonstationary deformation of extended thin-wall 
construction discreetly elastically attached to the rigid surface is approximately solved under live load. The 
properties of the heat-insulating shield are included in the equation of flexural vibrations of the beam through 
inertia forces. Local damage is described using generalized functions. The movable load is simulated by an 
infinite uniformly distributed normal force per unit length moving along the beam at a constant speed. 
Consequently, the inertial forces have a more complex structure than in the classical presentation. The problem 
is limited to the differential equation of flexural vibrations of the beam in partial derivatives. The speed of the 
load is included in the equation as a parameter. For the solution, the Bubnov method is used, in accordance 
with which the beam deflection is represented as a series of given coordinate functions with unknown 
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coefficients, which are considered as generalized coordinates. The possibility of decreasing framed structures 
maximum acceleration values in set points of aerospace systems under the action of different static and 
dynamic loads is investigated with the methods of computing experiment. Critical speed of load movement is 
calculated. 
 
Keywords: thin-wall construction, attachment joints, simplified dynamic model, computing experiment, critical 
movement speed. 
 
АННОТАЦИЯ 
 
 В динамических и квазистатических положениях проблема нестационарной деформации 
расширенной тонкостенной конструкции, которая прикреплена к жесткой поверхности, решается в 
процессе применения дополнительной нагрузки. Отсек удлиненной конструкции моделируется балкой. 
Свойства теплозащитного покрытия входят в уравнение изгибных колебаний балки через силы инерции. 
В работе локальные повреждения описаны с помощью обобщенных функций. Подвижная нагрузка 
имитируется бесконечной равномерно распределенной погонной силой, которая движется вдоль балки с 
постоянной скоростью. Вследствие этого инерционные силы имеют более сложную структуру, чем в 
классической постановке. Задача сводится к дифференциальному уравнению изгибных колебаний балки 
в частных производных. Скорость движения нагрузки входит в уравнение в качестве параметра. Для 
решения используется метод Бубнова, в соответствии с которым прогиб балки представлен в виде ряда 
заданных координатных функций с неизвестными коэффициентами, которые рассматриваются в 
качестве обобщённых координат. С применением методов вычислительного эксперимента исследована 
возможность уменьшения максимальных значений ускорения в заданных точках аэрокосмических систем 
под действием разных статических и динамических нагрузок. Рассчитывается критическая скорость 
движения груза. 
 
Ключевые слова: тонкостенная конструкция, крепежные соединения, упрощенная динамическая 
модель, вычислительный эксперимент, критическая скорость движения. 
 
 
 
 
INTRODUCTION 
 

The work is devoted to the investigation of 
the possibility of reducing the maximum values of 
accelerations at given points of frame structures 
of aerospace launching systems under the action 
of static and dynamic loads of various types 
(Wright, 2017; Hashemi, 2016; Chen et al., 2013; 
Groh and Pirrera, 2018). With increasing speeds 
of aerospace systems, there is a need to improve 
the calculation methods and to create more and 
more accurate methods for solving the problems 
of dynamic interaction of thin-walled structures 
under the action of movable loads (Danilin et al., 
2015; Lotfy, 2016; Baimakhan et al., 2016; Fan et 
al., 2017; Wei et al., 2017; Lomakin et al., 2018). 

An attempt is made here to develop 
efficient numerical methods and algorithms for 
solving the problems of the dynamics of long-
span beams with variable parameters simulating 
the elastic base under the action of movable 
railway loads or other non-stationary impacts.  

At the first stage, the problem of dynamic 
deformation of a two-layer composite elongated 
thin-walled structure under the action of movable 

inertial load, normal to its axis, is approximately 
solved (Freitas and Loeffler, 2016; Yuan et al., 
2016). The compartment of the extended 
construction is modeled with a beam. In this 
case, inertial forces have a more complex 
structure than in the case when the beam 
deflection depends only on its longitudinal 
coordinate (Liu et al., 2019). 

With regard to the above mentioned, the 
problem is limited to the differential equation of 
flexural vibrations of the beam in quartic partial 
derivatives. For the solution, the Bubnov method 
is used, according to which the deflection of the 
beam is represented as a series of given 
coordinate functions with unknown coefficients, 
which are considered as generalized coordinates 
(Tian et al., 2015). As an example, in a 
quasistatic formulation in the binomial 
approximation, the lower critical speeds of the 
load motion for various forms of shell stability 
loss. 

 
MATERIALS AND METHODS 
 

An approximate solution to the dynamic 
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behavior of extended thin-wall construction 
discreetly elastically attached to the rigid surface 
under live load. Such type problems appear in 
case of pressure wave influence on side missile 
boosters discreetly attached to the main carrying 
block. During exploitation, they are adjacent to 
both standard and local bends in the area of 
attachment joints (Manannikov et al., 2017; 
Gasparrini et al., 2018; Elder et al., 2017). As a 
result, for a description of structural dynamic 
behavior, we use a simplified accounting model 
based on the possibility of deformed state 
division on standard and local one. The first of it 
is associated with the bend of the extended shell 
as a beam with non-deforming transversal 
contour and the second one is associated with its 
local flexibility in the area of block joints. In 
accordance with it, we consider beam shell 
model, suspended near terminal sections ξ±=x  
on equivalent tension-compression spring (Figure 
1), which rigidity rc  (r = 1,2) is indicated by local 
shell flexibility in the area of attachment joints. 
Besides, its inertia can be neglected because of 
moving localness (Loeffler et al., 2013; Ruben et 
al., 2017). The moving load influencing on beam 
we can model by continuous stripe of normal 
evenly distributed intensity load р moving at a 
constant speed V, conditionally specified in the 
figure as force per unit length. 
 
RESULTS AND DISCUSSION: 
 

First of all, the authors solve the problem 
considering dynamic formulation. We assume 
that beam bends depend not only on its 
longitudinal coordinate х but time t. Besides, the 
deflection curve ),( txw  is simultaneously loaded 
movement trajectory. As for specified time t live 
load element will go the distance Vtx = , then the 
speed projection of this element dtdw /  for 
normal to the beam axis and its vertical 
acceleration 22

/ dtwd  will be full derivatives 
Equations 1,2. The second formula item for 
acceleration contains mixed derivative 
corresponding to Coriolis acceleration and in the 
process of practical problems, it’s usually 
neglected (Konoplev and Yakushev, 2003; 
Panovko and Gubanova, 1979). The rigidity of 
equivalent spring с can be found as value 
reversible to its local flexibility f (c=1/f). The last 
one can be approximately indicated as cylindrical 
shell deflection under influence of concentrated 
radial single forces Equation 3 (Nerubaylo, 1983). 
Where R, h and E – radius, shell thickness and 

module of elasticity of its material accordingly. 

Concentrated standard forces appearing 
within block attachment joints should be specified 
within the Winkler hypothesis. In light of all of the 
above for a description of the dynamic deformed 
state of simplified beam model of shell we use its 
lateral oscillation equation as follows Equation 4, 
where E and J – beam material elasticity modulus 
and its cross-section inertia accordingly, 

0
m  – 

bulk weight, )( rx ξδ −  – Dirac delta function with 

the reference position )2,1( == rx rξ  of block 
attachment joints (equivalent spring attachment 
coordinates), g – acceleration of gravity.  

Equation 4 as a parameter contains load 
movement speed V. For its approximation solve 
we use Bubnov method in accordance with which 
we demonstrate beam deflection as the following 
factorization Equation 5. Where )()(

1
ttw δ=  and 

)()(
2

ttw θ=  – displacement and beam turning 
angle as a rigid body at the beginning of 
coordinates (Figure 1). Approximating functions 

1
1

=ϕ  and x=
2

ϕ  correspond to it. The other 

unknown time functions )(twi  indicate flexural 

beam deformations, )(xiϕ - set coordinate 

functions. Substituting factorization (Equation 5) 
in Equation 4 and using Bubnov method we lead 
the problem to the system of ordinary differential 
equations of the second order towards unknown 
functions iw  in factorization (Equation 5). In 

matrix form is has the following view Equation 6. 
Where M and )(VK  – a square matrix of mass 

and beam rigidity, and W and P – vectors of 
unknown functions )(twi  and gravity loads 

accordingly Equation 7. Elements of this matrix 
and vectors are as follows in Equation 8, 9, 10. In 
Equation 8 function primes iϕ  denote its 

derivatives according to х axis. Because of 
accounting of beam shift as rigid body setting by 
functions 1

1
=ϕ  and x=

2
ϕ  even in the process 

of selection of the other approximating functions 
orthogonal matrix of rigidity К and mass М will not 
be diagonal one. So, a solution of the Equation 6 
in high approximations may be numerically 
indicated only. As the elements of this stiffness 
matrix include load movement speed, then for 
some of its values called critical ones, beam 
deflections begin incrementally increase, that 
may be considered as the loss of structural 
stability (Gorshkov et al., 2003; Zhavoronok et al., 
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2010; Medvedskiy and Rabinskiy, 2007). 

When solving the problem in a simpler 
quasistatic position, we assume that beam 
deflection does not depend on time and it can be 
calculated on longitudinal coordinate х. Then, the 
equation of lateral beam vibrations (Equation 4) 
acquires a simpler form (Equation 11). 

All elements of Equation 11 are standard. 
To solve it we also use Bubnov method, 
demonstrating beam deflection w as factorization 
Equation 5 but under iw  we understand not only 

time functions but unknown coefficients. After 
Bubnov method use Equation 11 goes to 
simultaneous linear algebraic equations towards 
constants iw . In matrix form, it has the following 

view (Equation 12). 

Rigid matrix elements 
)(VK  and vectors Р 

are calculated according to Equation8. The 
peculiarity of these equations is its dependence 
on movement load speed. The critical value of 
this speed is calculated based on the condition of 
zero equality of system determinant (Equations 
12, 13). 

Examples. We consider the framework 
structure, representing an extended shell 
attached by frontal sections to the rigid stationary 
surface with equal equivalent springs. For this 
system in quasistatic formation in binomial 
approximation, we indicate minimum critical load 
speed on different forms of shell stability loss. In 
case of symmetric or anti-symmetric form 
towards the origin of coordinates (Figure 1) 
stability loss forms beam deflection can be 
accordingly represented as Equations 14, 15. 

In these approximations, the first items are 
associated with beam movement as a rigid body 
and the second ones are associated with its rigid 
deformations. Beam movements as a rigid body 
and elastic couplings influence only on its 
movement and critical speed only depend on 
bending deformations. Squares of minimum 
dimensionless critical speeds 222

/ EglpVV
КРКР

=

∗  
found following (Equation 12) in case of 
asymmetrical and anti-symmetric form of stability 
loss are accordingly equal Equations 16, 17. 

So, stability loss on anti-symmetric form, as 
could be expected, occurs in case of the lower 
speed of movement. 

 
 

CONCLUSIONS: 
 

Thin models tend to flex under axial load. 
Loss of stability is defined as the sudden 
deformation that occurs when the stored 
membrane (axial) energy is converted to bending 
energy without changing the applied external 
loads. Mathematically, when a loss of stability 
occurs, the stiffness becomes degenerate. The 
linearized buckling method used here solves the 
eigenvalue problem to estimate critical buckling 
factors and the corresponding forms of buckling 
mode. The model can be bent in different forms 
under loads of various levels. The form that the 
model assumes during buckling is called the form 
of buckling mode, and the load is called "critical" 
or "critical longitudinal load." 

Loss of stability of real shells in many cases 
occurs at a lower load due to the significant 
influence of various factors, especially initial 
shape irregularities. 

For complex structures, the exact solution 
is difficult, so they resort to various approximate 
methods. For many of them, the energy 
sustainability criterion is used, in which the nature 
of the change in the potential energy of the 
system is considered when it is little deviated 
from the equilibrium position (for stable 
equilibrium P = min). When considering non-
conservative systems, for example, a rod 
compressed by a force whose slope changes in 
the process of buckling (tracking force), a 
dynamic criterion is used, consisting in 
determining small oscillations of the loaded 
system. Of importance is the study of so-called. 
supercritical behavior of elastic systems. It 
requires solving nonlinear boundary value 
problems. For a rod, supercritical deformation is 
possible only with its very large flexibility. On the 
contrary, for thin plates, significant deflections in 
the supercritical stage are quite possible - 
provided that the edges of the plate are 
supported by rigid rods (stringers). For shells, 
supercritical deformation is usually associated 
with snapping and loss of the bearing capacity of 
the structure. 

As a result of the calculations performed, 
the lower critical speeds of the load motion for 
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various forms of shell stability loss were 
determined for the binomial approximation. It is 
concluded that the shell stability loss occurs in an 
antisymmetric form and is realized at a lower 
speed of the load. 
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Figure 1. The beam model of the shell, suspended near the frontal sections 
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