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RESUMO

Na formulagdo quase-estéatica, resolve-se o problema do comportamento dindmico de uma placa fina
elastica discretamente suportada por um sistema de rigidificadores, sobre a qual se move uma carga
distribuida linear infinita. A todos os lados da placa sao fixados. A solugédo é baseada no método de Bubnov-
Galerkin. Como resultado, a equacgao diferencial parcial reduz-se a um sistema de equacgdes diferenciais
ordindrias para fungdes desconhecidas do tempo. Acredita-se que a placa sob carga mével esteja num modo
quase-estatico, o que corresponde a sua superficie curva constante no tempo. Ao resolver um problema na
formulacdo dinamica, assume-se que a superficie curva da placa sob carga mével muda ndo apenas em
termos de coordenadas espaciais, mas também no tempo. As velocidades criticas de seu movimento sao
determinadas. Com base na pesquisa realizada, a possibilidade de reduzir os valores maximos de aceleragoes
em determinados pontos de estruturas de armacdo com rigidificadores para langadores de sistemas
aeroespaciais foi revelada. Os exemplos sdo considerados.

Palavras-chave: placa fina, solugdo quase-estatica, velocidades criticas, rigidificadores.
ABSTRACT

In the quasistatic formulation, the problem of the dynamic behavior of a thin elastic discretely reinforced
system of plate stiffeners is solved, on the surface of which an infinite linear distributed load moves. The plate is
clamped from all sides. The solution is based on the Bubnov-Galerkin method. As a result, the partial differential
equation reduces to a system of ordinary differential equations with respect to unknown time functions. It is
believed that the plate under the action of a movable load is in a quasistatic regime, to which there corresponds
a constant in time its curved surface. When solving a problem in a dynamic formulation, it is considered that the
curved surface of the plate under the action of a moving load changes not only in spaced coordinates, but also
in time. The critical velocities of its motion are determined. On the basis of the conducted researches, the
possibility of reducing the maximum values of accelerations at given points of frame structures with stiffeners for
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launching installations of aerospace systems has been revealed. Examples are considered.

Keywords: thin plate, quasistatic solution, critical velocities, stiffeners.
AHHOTALUUA

B kBasuctatMyeckoM MOCTaHOBKE pelleHa 3agada O [[MHaMUYecKOM MOBeAEHUM TOHKOW ynpyrom
OVCKPETHO MOAKPENSIEHHOW CUCTEMON pebep >XEeCTKOCTM MNNacTWHbI, MO MOBEPXHOCTM KOTOPOW [ABUXETCH
OeckoHevyHasd MNOroHHas pacnpegerneHHas Harpy3ka. [lnactvHa 3alwemneHa cO BCex CTOpoH. PelweHune
npoBoAMTCA Ha ocHoBe MeToga bybHoBa-lanepkuHa. B pesynbTate ypaBHEHME B 4YaCTHbIX MPOM3BOAHbLIX
CBOOMUTCS K cMCTeMe OObIKHOBEHHbIX AnddepeHLnanbHbIX YpaBHEHUN OTHOCUTENBHO HEU3BECTHbLIX (PYHKLUN
BpeMeHn. Cuntaetcs, YTO NnacTtuHa noj AeWCTBMEM MOABWXKHOW Harpy3km HaxoguTcsl B KBa3uMCTaTUYECKOM
pexvuMe, KOTOPOMY COOTBETCTBYET HEM3MEHHAs BO BPEMEHM ee U30rHyTas NoBepXHOCTb. [Npu pelueHun 3agaun
B OUHAMU4YeCKOM MOCTaAHOBKE CUYMTAETCH, YTO U3OrHyTas NOBEPXHOCTb MMAacCTUHbI NO4 AEeNCTBMEM NOOBUXHOW
Harpy3kM WM3MEHSIETCS He TONbKO MO MPOCTPAHCTBEHHbIM KOOpAUHATaM, HO M BO BpemeHwn. OnpeneneHsl
KPUTUYECKNE CKOpPOCTM ee ABWXKeHus. Ha ocHOoBe npoBedeHHbIX WCCNedoBaHWi BbiSiBNEHA BO3MOXHOCTb
CHWKEHMST MaKCUMarnbHbIX 3HAa4YeHWN YCKOPEHMI B 3aJaHHbIX TOYKaX KapKaCHbIX KOHCTPYKUM C pebpamu
XKEeCTKOCTW Afsi CTAapTOBbIX YCTAHOBOK aBUAKOCMMYECKMX CMCTeM. PaccMoTpeHbl npuMepsb!.

KnroueBble cnoBa: moHKas nfacmuHa, Keasucmamu4yeckoe peuwleHue, Kpumudeckue ckopocmu, pebpa

XKecmkocmu.

INTRODUCTION

The thin-walled structures, reinforced with
stiffeners, are widely used in engineering practice
and are exposed to various dynamic loads.
Reinforcements change the frequency spectrum
and the mode of plate vibrations (Yakushev,
1990; Zhigalko and Dmitrieva, 1978; Bulatova
and Siniakova, 2017). It should be noted that the
stiffeners slightly increase the weight of the
structure, but significantly increase its strength
and are indispensable for the transfer of forces
close to concentrated. When solving dynamic
problems for plates reinforced with stiffeners, it
becomes necessary to take into account their
discrete arrangement (Klimanov and
Logginskaya, 1974; Vlasov, 1967; Gurevich,
1972; Zhestkii, 1972).

Stiffened plates are one of the main
structural elements of thin-walled systems of
aircraft, missile and other models of equipment
under the action of a movable load. Because of
this, the problems of the action of movable loads
on stiffened plates have quite definite technical
applications (Zhao et al.,, 2018; Kotlikov et al.,
2018; Souad and Brahim, 2018; Asjad et al,
2016; Hassan and Chatterjee, 2015). A review of
the works on this subject is given in (Konoplev
and Yakushev, 2003; Medvedsky and Rabinsky,
2007), but the corresponding problems are
considered there mainly for smooth plates.
Stiffened plates, and moreover, taking into

account the discreteness of the arrangement of
the stiffeners in them were not considered
(Kachur and Sumin, 1973; Kiselevskaya, 1962;
Kovinskaya and Nikiforov, 1973; Moshensky,
1955; Osipova and Fleishman, 1973; Postnov,
1965; Hanzhov, 1970; Berger, 1970). In the
present paper, in quasistatic and dynamic
formulations, the problem of the dynamic
behavior of plates is solved, taking into account
the discrete arrangement of the stiffeners
(stringers). In this case, in contrast to (Antufev et
al., 2017), the stiffened plate with a rigid fixing is
considered here. Previously, this type of work
was presented in (Volmir, 1967).

Let us consider a thin elastic plate of
rectangular shape in plan, referred to the
Cartesian coordinate system Oxyz. On its surface
in the direction of the x-axis at a constant velocity
V, an infinite uniformly distributed over the area of
the plate inertial load of intensity p moves, which
is conditionally shown in the form of distributed
forces along a line perpendicular to the x-axis
(Figure 1).

CHARACTERISTICS OF THE STIFFENED
PLATE

The authors consider a thin elastic plate of
rectangular shape in plan, referred to the
Cartesian coordinate system 0Oxyz. On its surface
in the direction of the x-axis at a constant velocity
V, an infinite uniformly distributed over the area of
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the plate inertial load of intensity p moves, which
is conditionally shown in the form of distributed
forces along a line perpendicular to the x-axis
(Figure 1).

In the same figure, the dotted lines parallel
to the x-axis also show the stringers that support
it. In the future, the inertia of plate motion is
determined mainly by the dynamic action of
centrifugal forces of inertia, and its mass does not
play an important role (Panovko and Gubanova,
1977). For a smooth plate, we solve the problem
in quasistatic and dynamic formulations in order
to choose the optimal variant for investigating the
dynamic behavior of the already stiffened plate
(Formalev and Kolesnik, 2017; Formalev and
Kolesnik, 2018; Roux et al., 2015; Gibigaye et al.,
2016).

The authors believe that the plate under the
action of the movable load is in a quasistatic
mode, which corresponds to the time constant t
its curved surface w(x,y). At the same time, it is
also the surface of motion of the load elements,
which in a time t pass through the distance x =
Vt. Due to the curvature of the curved plate
surface, the force acting on it is determined by
the sum of the weight of the linear load p and its

inertia force (p/g)-0*w/ot>. Without taking

into account the weight of the plate, the intensity
of the total linear load, taking into account the
relation x = VWt is Equation 1, where g —
gravitational acceleration. Then the bending
equation of the plate in the quasistatic mode
takes the following form Equation 2. Here

D =ERh*/(1-v?*) - cylindrical rigidity of the
plate; h, E and v - thickness, modulus of
elasticity and Poisson's ratio of its material,

respectively, V2 - Laplace operator. To solve
the partial differential Equation 2, we use the
Bubnov-Galerkin method, in accordance with
which we represent the deflection of w as a

factorization (Equation 3). Here w, — unknown

coefficients, @, (x,y) — orthogonal forms of
natural vibrations of the plate. After applying the
procedure of the Bubnov method, the differential
Equation 2 goes into the system of K x L linear
algebraic equations with respect to the
coefficients w, . However, since the eigenform

of the vibrations are orthogonal @, (x,y), this

system breaks down into separate, unrelated
equations for each pair of values of mand n. The
solution of each of them has the form Equation 4,

where S — area of the plate. When the
denominator of formula (4) tends to zero, the
deflection of the plate increases indefinitely. From
this condition, it is possible to determine the

square of the critical velocity of the load VI?P in

form mXn (Equation 5). When performing
concrete calculations, the integral in the
denominator of formula (5) will be negative and

therefore V[?P will become positive.

SOLVING THE PROBLEM IN A DYNAMIC
FORMULATION:

When solving the problem in a dynamic
formulation, we assume that the curved surface
of the plate under the action of a movable load of
intensity p varies not only with respect to the
spaced coordinates x and y but also in time & In
this case, the projection of the velocity of an
element of a uniformly moving load p on the
vertical axis of the plate will be equal to the
already full derivative and the vertical
acceleration of this element, taking into account
the relation x = Vt, is Equation 6. The second
term in Equation 6 containing the mixed
derivative  corresponds to the  Coriolis
acceleration and is usually neglected in solving
practical problems. Then the equation of plate
motion under the action of the gravitational and
inertial components of the load will be Equation 7.
For its approximate solution, we also apply the
Bubnov method, in accordance with which we
represent the deflection of the plate as a

factorization (Equation 8), where w, () -

unknown functions of time, @, (x,y) — forms of

natural vibrations of the plate. Substituting the
factorization Equation 8 into Equation 7 and
applying the Bubnov-Galerkin method to the
latter, we reduce it to the system KxL of
differential equations of the second order but
already in ordinary derivatives. However, due to
the orthogonality of the eigenmodes of the plate,

@, (x,y) it splits into separate for each pair of

m and n non-related differential equations of the
form Equation 9, where the points of the function

w denote its time derivatives, and a)fm — square

of the natural vibrations frequency of the plate in
form mXn. The coefficients entering into
Equation 9 have the following form Equations 10,
11. The standard Equation 9 for given initial
conditions has a solution in closed form. In order
to determine the critical velocity of the load, we
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use the dynamic stability criterion. According to
which, in the critical state, the natural frequencies

of the system's vibrations go to zero (@,,, =0).

From this condition, we define the square of the
critical velocity of the load in the form mXn. It
completely coincides with formula (5) obtained
under the assumption of quasistatic deformation
of the plate. Therefore, in the future, when solving
problems about the motion of the load over
discretely supported plates, we will use a simpler
quasistatic approach.

Let the plate be discretely supported by a
system of elastic stringers. In solving the
problem, we assume that the neutral line of these
stiffeners lies in the middle surface of the plate.
Therefore, they can be considered as one-
dimensional elastic inclusions. To solve the
problem, we separate the stringers from the plate
mentally and replace their effect distributed along

the contact lines of the bodies y=1y, in the

middle surface of the plate by interaction
reactions ¢,(x) directed along the z-axis. Since

the stiffness of the plate in the tangential
directions x and y is much larger than in the
direction of the normal to its surface, then we
neglect the tangential reactions of the contact.
Then, under the assumption of a quasistatic
character of plate deformation, the equation of its
bending becomes Equation 12, where C — the
number of stiffeners, and delta — Dirac function

O(y—y;) determine the coordinates of the

location of stringers along the y-axis. Each of the
stringers is assigned to a rectangular coordinate
system O0xz (Figure 1). Equations of their
equilibrium in the projection onto the z-axis have

the form Equation 13. Here EJ,; and z; — their

flexural rigidity and deflections, respectively. The
mass of the stringer itself, as well as the inertia of
its movement, by analogy with the plate, is
neglected. On each of the contact lines the
condition of equality of deflections of both bodies

w(x,y;) = z;, but we assume that the deformed

states caused by neighboring contact reactions
do not interfere with each other. Then,

substituting the reaction of the contact g, from

(12) into Equation 11 we obtain the resolving
equation of the problem in the form Equation 14.
It is a partial differential equation with
discontinuous coefficients in the direction of the
y-axis, which is due to the presence in the last
term of its left side of the delta — the Dirac
functions. To solve it, we use the Bubnov

method, in accordance with which we represent
the deflection of the w plate also in the form (3).
Applying the procedure of the Bubnov method to
Equation 13, we reduce it to the coupled system
K x L of linear algebraic equations with respect

to the coefficients w,  in the factorizations (3). In

the matrix form of the record, it has the form
Equation 15, where Equation 16. The dimension
of the stiffness matrix K, the inertia M and the
vectors W, F is determined by the number of
terms of the series stored in the factorization (3).
The elements of the matrices K, M, and the
vector F have the form Equations 17,18,19. The
matrix K has a block-diagonal character, which is
due to the presence of a discontinuity in its
coefficients only along the y-axis. In each of the
blocks, its first term is diagonal. When solving the
system of Equations 13 with changing load
velocities V, the deflections of the plate will also
change. If they begin to increase sharply for
some values of V, this means that we are
approaching the critical behavior.

EXAMPLES OF EXPERIMENTAL
STUDIES:

As a first example, let us consider a smooth
plate rigidly clamped around the edges. Then the

function @, (x,y) in the Equation 3 and
Equation 8 we take in the form Equation 20,
where (m=1,2,..K;n=1,3,....L)

Substituting Equation 19 into the Equation
5 and carrying out the necessary calculations for
the simplest form of stability loss with wave
numbers m=n=1, we obtain the minimum value of
the critical velocity similar to that of (Antufev,
2017).

With this in mind, after a number of
transformations, the quasidynamic deflections of
the plate center (x = y = 0), on the ground of the
Equation 4, can also be written in the form
Equations 21, 22.

Where V., — square of the critical speed of
the movable load, determined by the Equation 4,
w., — static deflection of the center of the plate.
For a plate, with a relative thickness a/h =20
dimensionless static deflection
wi, =we, (p/ ER) will be w;, =1,168-107, and
in the monograph (Timoshenko, 1948) the same
value is w;, =1,136-107. Thus, we can assume
that the use of a monomial approximation of
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unknowns in the solution of this problem is
justified. Figure 2 shows the dependence of the
dimensionless deflection of the center of the plate

w" -10° from the square of the relative velocity of
the load V*/V7,. When V —V,, deflections

increase without limit. The dashed line shows the
dependence of the dimensionless deflection of
the center of the plate on the square of the
relative velocity for the hinged plate, given in
(Antufev et al., 2017). For a plate with one
stringer, in the monomial approximation, further
neglecting the gravitational component of the
load, the square of the critical velocity of its

motion will be Vg =k, /m,,, where the

stiffness and inertia coefficients are calculated
from the Equation 16 (Equation 23). The first term
in this formula coincides with the value of the
square of the critical velocity for the smooth plate
(Equation 5). Consequently, the presence of even
one stringer leads to a sharp increase in the
critical load velocity.

CONCLUSIONS:

The dynamic behavior of stiffened plates is
devoted to a sufficient number of works, the main
ones of which can be considered the following,
but there are not so many works related to the
action of the movable load. In this paper, we
studied the dynamic behavior of a rigidly clamped
plate reinforced with stiffeners under the action of
the movable load. It is shown that the use of a
monomial approximation of unknowns in solving
such problems is justified. Determined that the
dependence of the dimensionless deflection of
the plate center on the square of the relative
velocity for a rigidly clamped plate differs
significantly from the analogous dependence of
the hinged plate.

It is determined that the nature of the
deformation of a cylindrical shell under non-
axisymmetric high-speed loading significantly
depends on the rate of load application. Under
quasistatic loading, the characteristic
manifestation of nonlinearity of the
inhomogeneous stress-strain state of the shell is
a smooth restructuring of the shape of the bend
in the loading process, while preserving the
known behavior patterns of the shells under static
loading depending on the degree of non-
uniformity of the load. Dynamic loading is
characterized by the maximum sensitivity of the
structure to the magnitude of the impact velocity,

the change in the parameters of the structure and
the localization of the pressure profile. It has
been established that during high-speed loading
it remains during the entire time of deformation of
the similarity of the flexural form, fixed by plastic
deformations. This type of deformation is
distinguished by the insensitivity of critical loads
to the degree of heterogeneity, the approximation
(with increasing degree of heterogeneity) of the
level of critical loads to a certain asymptote, a
significant increase, compared to static loading,
the level of critical pressures.
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Figure 1. Conditional scheme of the clamped plate and the inertial load of intensity
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Figure 2. Dependence of the dimensionless deflection of the plate center
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