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RESUMO 
 

Na formulação quase-estática, resolve-se o problema do comportamento dinâmico de uma placa fina 
elástica discretamente suportada por um sistema de rigidificadores, sobre a qual se move uma carga 
distribuída linear infinita. A todos os lados da placa são fixados. A solução é baseada no método de Bubnov-
Galerkin. Como resultado, a equação diferencial parcial reduz-se a um sistema de equações diferenciais 
ordinárias para funções desconhecidas do tempo. Acredita-se que a placa sob carga móvel esteja num modo 
quase-estático, o que corresponde à sua superfície curva constante no tempo. Ao resolver um problema na 
formulação dinâmica, assume-se que a superfície curva da placa sob carga móvel muda não apenas em 
termos de coordenadas espaciais, mas também no tempo. As velocidades críticas de seu movimento são 
determinadas. Com base na pesquisa realizada, a possibilidade de reduzir os valores máximos de acelerações 
em determinados pontos de estruturas de armação com rigidificadores para lançadores de sistemas 
aeroespaciais foi revelada. Os exemplos são considerados. 
 
Palavras-chave: placa fina, solução quase-estática, velocidades críticas, rigidificadores. 
 
ABSTRACT 
 
 In the quasistatic formulation, the problem of the dynamic behavior of a thin elastic discretely reinforced 
system of plate stiffeners is solved, on the surface of which an infinite linear distributed load moves. The plate is 
clamped from all sides. The solution is based on the Bubnov-Galerkin method. As a result, the partial differential 
equation reduces to a system of ordinary differential equations with respect to unknown time functions. It is 
believed that the plate under the action of a movable load is in a quasistatic regime, to which there corresponds 
a constant in time its curved surface. When solving a problem in a dynamic formulation, it is considered that the 
curved surface of the plate under the action of a moving load changes not only in spaced coordinates, but also 
in time. The critical velocities of its motion are determined. On the basis of the conducted researches, the 
possibility of reducing the maximum values of accelerations at given points of frame structures with stiffeners for 
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launching installations of aerospace systems has been revealed. Examples are considered. 
 
Keywords: thin plate, quasistatic solution, critical velocities, stiffeners. 
 
АННОТАЦИЯ 
 

В квазистатической постановке решена задача о динамическом поведении тонкой упругой 
дискретно подкрепленной системой ребер жесткости пластины, по поверхности которой движется 
бесконечная погонная распределенная нагрузка. Пластина защемлена со всех сторон. Решение 
проводится на основе метода Бубнова-Галеркина. В результате уравнение в частных производных 
сводится к системе обыкновенных дифференциальных уравнений относительно неизвестных функций 
времени. Считается, что пластина под действием подвижной нагрузки находится в квазистатическом 
режиме, которому соответствует неизменная во времени ее изогнутая поверхность. При решении задачи 
в динамической постановке считается, что изогнутая поверхность пластины под действием подвижной 
нагрузки изменяется не только по пространственным координатам, но и во времени. Определены 
критические скорости ее движения. На основе проведенных исследований выявлена возможность 
снижения максимальных значений ускорений в заданных точках каркасных конструкций с ребрами 
жесткости для стартовых установок авиакосмических систем. Рассмотрены примеры. 
 
Ключевые слова: тонкая пластина, квазистатическое решение, критические скорости, ребра 
жесткости. 
 
 
 
INTRODUCTION 
 

The thin-walled structures, reinforced with 
stiffeners, are widely used in engineering practice 
and are exposed to various dynamic loads. 
Reinforcements change the frequency spectrum 
and the mode of plate vibrations (Yakushev, 
1990; Zhigalko and Dmitrieva, 1978; Bulatova 
and Siniakova, 2017). It should be noted that the 
stiffeners slightly increase the weight of the 
structure, but significantly increase its strength 
and are indispensable for the transfer of forces 
close to concentrated. When solving dynamic 
problems for plates reinforced with stiffeners, it 
becomes necessary to take into account their 
discrete arrangement (Klimanov and 
Logginskaya, 1974; Vlasov, 1967; Gurevich, 
1972; Zhestkii, 1972). 

Stiffened plates are one of the main 
structural elements of thin-walled systems of 
aircraft, missile and other models of equipment 
under the action of a movable load. Because of 
this, the problems of the action of movable loads 
on stiffened plates have quite definite technical 
applications (Zhao et al., 2018; Kotlikov et al., 
2018; Souad and Brahim, 2018; Asjad et al., 
2016; Hassan and Chatterjee, 2015). A review of 
the works on this subject is given in (Konoplev 
and Yakushev, 2003; Medvedsky and Rabinsky, 
2007), but the corresponding problems are 
considered there mainly for smooth plates. 
Stiffened plates, and moreover, taking into 

account the discreteness of the arrangement of 
the stiffeners in them were not considered 
(Kachur and Sumin, 1973; Kiselevskaya, 1962; 
Kovinskaya and Nikiforov, 1973; Moshensky, 
1955; Osipova and Fleishman, 1973; Postnov, 
1965; Hanzhov, 1970; Berger, 1970). In the 
present paper, in quasistatic and dynamic 
formulations, the problem of the dynamic 
behavior of plates is solved, taking into account 
the discrete arrangement of the stiffeners 
(stringers). In this case, in contrast to (Antufev et 
al., 2017), the stiffened plate with a rigid fixing is 
considered here. Previously, this type of work 
was presented in (Volmir, 1967). 

Let us consider a thin elastic plate of 
rectangular shape in plan, referred to the 
Cartesian coordinate system 0xyz. On its surface 
in the direction of the x-axis at a constant velocity 
V, an infinite uniformly distributed over the area of 
the plate inertial load of intensity p moves, which 
is conditionally shown in the form of distributed 
forces along a line perpendicular to the x-axis 
(Figure 1). 
 
CHARACTERISTICS OF THE STIFFENED 
PLATE 
 

The authors consider a thin elastic plate of 
rectangular shape in plan, referred to the 
Cartesian coordinate system 0xyz. On its surface 
in the direction of the x-axis at a constant velocity 
V, an infinite uniformly distributed over the area of 
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the plate inertial load of intensity p moves, which 
is conditionally shown in the form of distributed 
forces along a line perpendicular to the x-axis 
(Figure 1). 

In the same figure, the dotted lines parallel 
to the x-axis also show the stringers that support 
it. In the future, the inertia of plate motion is 
determined mainly by the dynamic action of 
centrifugal forces of inertia, and its mass does not 
play an important role (Panovko and Gubanova, 
1977). For a smooth plate, we solve the problem 
in quasistatic and dynamic formulations in order 
to choose the optimal variant for investigating the 
dynamic behavior of the already stiffened plate 
(Formalev and Kolesnik, 2017; Formalev and 
Kolesnik, 2018; Roux et al., 2015; Gibigaye et al., 
2016). 

The authors believe that the plate under the 
action of the movable load is in a quasistatic 
mode, which corresponds to the time constant t 
its curved surface w(x,y). At the same time, it is 
also the surface of motion of the load elements, 
which in a time t pass through the distance x = 
Vt. Due to the curvature of the curved plate 
surface, the force acting on it is determined by 
the sum of the weight of the linear load p and its 

inertia force 22
/)/( twgp ∂∂⋅ . Without taking 

into account the weight of the plate, the intensity 
of the total linear load, taking into account the 
relation x = Vt, is Equation 1, where g – 
gravitational acceleration. Then the bending 
equation of the plate in the quasistatic mode 
takes the following form Equation 2. Here 

)1/(
23

ν−= EhD  – cylindrical rigidity of the 

plate; h, E and ν  – thickness, modulus of 
elasticity and Poisson's ratio of its material, 

respectively, 2
∇  – Laplace operator. To solve 

the partial differential Equation 2, we use the 
Bubnov-Galerkin method, in accordance with 
which we represent the deflection of w as a 
factorization (Equation 3). Here mnw  – unknown 

coefficients, ),( yxmnϕ  – orthogonal forms of 

natural vibrations of the plate. After applying the 
procedure of the Bubnov method, the differential 
Equation 2 goes into the system of LK ×  linear 
algebraic equations with respect to the 
coefficients mnw . However, since the eigenform 

of the vibrations are orthogonal ),( yxmnϕ , this 

system breaks down into separate, unrelated 
equations for each pair of values of m and n. The 
solution of each of them has the form Equation 4, 

where S – area of the plate. When the 
denominator of formula (4) tends to zero, the 
deflection of the plate increases indefinitely. From 
this condition, it is possible to determine the 

square of the critical velocity of the load 2
КР

V  in 

form nm ×  (Equation 5). When performing 
concrete calculations, the integral in the 
denominator of formula (5) will be negative and 

therefore 2
КР

V  will become positive. 

 
SOLVING THE PROBLEM IN A DYNAMIC 
FORMULATION: 
 

When solving the problem in a dynamic 
formulation, we assume that the curved surface 
of the plate under the action of a movable load of 
intensity p varies not only with respect to the 
spaced coordinates x and y but also in time t. In 
this case, the projection of the velocity of an 
element of a uniformly moving load p on the 
vertical axis of the plate will be equal to the 
already full derivative and the vertical 
acceleration of this element, taking into account 
the relation x = Vt, is Equation 6. The second 
term in Equation 6 containing the mixed 
derivative corresponds to the Coriolis 
acceleration and is usually neglected in solving 
practical problems. Then the equation of plate 
motion under the action of the gravitational and 
inertial components of the load will be Equation 7. 
For its approximate solution, we also apply the 
Bubnov method, in accordance with which we 
represent the deflection of the plate as a 
factorization (Equation 8), where )(twmn  – 

unknown functions of time, ),( yxmnϕ  – forms of 

natural vibrations of the plate. Substituting the 
factorization Equation 8 into Equation 7 and 
applying the Bubnov-Galerkin method to the 
latter, we reduce it to the system LK ×  of 
differential equations of the second order but 
already in ordinary derivatives. However, due to 
the orthogonality of the eigenmodes of the plate, 

),( yxmnϕ  it splits into separate for each pair of 

m and n non-related differential equations of the 
form Equation 9, where the points of the function 

w denote its time derivatives, and 2
mnω  – square 

of the natural vibrations frequency of the plate in 
form nm × . The coefficients entering into 
Equation 9 have the following form Equations 10, 
11. The standard Equation 9 for given initial 
conditions has a solution in closed form. In order 
to determine the critical velocity of the load, we 
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use the dynamic stability criterion. According to 
which, in the critical state, the natural frequencies 
of the system's vibrations go to zero ( 0=mnω ). 

From this condition, we define the square of the 
critical velocity of the load in the form nm × . It 
completely coincides with formula (5) obtained 
under the assumption of quasistatic deformation 
of the plate. Therefore, in the future, when solving 
problems about the motion of the load over 
discretely supported plates, we will use a simpler 
quasistatic approach. 

Let the plate be discretely supported by a 
system of elastic stringers. In solving the 
problem, we assume that the neutral line of these 
stiffeners lies in the middle surface of the plate. 
Therefore, they can be considered as one-
dimensional elastic inclusions. To solve the 
problem, we separate the stringers from the plate 
mentally and replace their effect distributed along 
the contact lines of the bodies iyy =  in the 

middle surface of the plate by interaction 
reactions )(xqi  directed along the z-axis. Since 

the stiffness of the plate in the tangential 
directions x and y is much larger than in the 
direction of the normal to its surface, then we 
neglect the tangential reactions of the contact. 
Then, under the assumption of a quasistatic 
character of plate deformation, the equation of its 
bending becomes Equation 12, where C – the 
number of stiffeners, and delta – Dirac function 

)( iyy −δ  determine the coordinates of the 

location of stringers along the y-axis. Each of the 
stringers is assigned to a rectangular coordinate 
system 0xz (Figure 1). Equations of their 
equilibrium in the projection onto the z-axis have 
the form Equation 13. Here iEJ  and iz  – their 

flexural rigidity and deflections, respectively. The 
mass of the stringer itself, as well as the inertia of 
its movement, by analogy with the plate, is 
neglected. On each of the contact lines the 
condition of equality of deflections of both bodies 

ii zyxw =),( , but we assume that the deformed 

states caused by neighboring contact reactions 
do not interfere with each other. Then, 
substituting the reaction of the contact iq  from 

(12) into Equation 11 we obtain the resolving 
equation of the problem in the form Equation 14. 
It is a partial differential equation with 
discontinuous coefficients in the direction of the 
y-axis, which is due to the presence in the last 
term of its left side of the delta – the Dirac 
functions. To solve it, we use the Bubnov 

method, in accordance with which we represent 
the deflection of the w plate also in the form (3). 
Applying the procedure of the Bubnov method to 
Equation 13, we reduce it to the coupled system 

LK ×  of linear algebraic equations with respect 
to the coefficients mnw  in the factorizations (3). In 

the matrix form of the record, it has the form 
Equation 15, where Equation 16. The dimension 
of the stiffness matrix K, the inertia M and the 
vectors W, F is determined by the number of 
terms of the series stored in the factorization (3). 
The elements of the matrices K, M, and the 
vector F have the form Equations 17,18,19. The 
matrix K has a block-diagonal character, which is 
due to the presence of a discontinuity in its 
coefficients only along the y-axis. In each of the 
blocks, its first term is diagonal. When solving the 
system of Equations 13 with changing load 
velocities V, the deflections of the plate will also 
change. If they begin to increase sharply for 
some values of V, this means that we are 
approaching the critical behavior. 
 
EXAMPLES OF EXPERIMENTAL 
STUDIES: 
 

As a first example, let us consider a smooth 
plate rigidly clamped around the edges. Then the 
function ),( yxmnϕ  in the Equation 3 and 

Equation 8 we take in the form Equation 20, 
where (m=1,2,..K;n=1,3,….L) 

Substituting Equation 19 into the Equation 
5 and carrying out the necessary calculations for 
the simplest form of stability loss with wave 
numbers m=n=1, we obtain the minimum value of 
the critical velocity similar to that of (Antufev, 
2017). 

With this in mind, after a number of 
transformations, the quasidynamic deflections of 
the plate center (x = y = 0), on the ground of the 
Equation 4, can also be written in the form 
Equations 21, 22. 

Where 2

КР
V  – square of the critical speed of 

the movable load, determined by the Equation 4, 

СТ
w  – static deflection of the center of the plate. 

For a plate, with a relative thickness 20/ =ha  
dimensionless static deflection 

)/( Ehpww
СТСТ

=

∗  will be 510168,1 −∗

⋅=
СТ

w , and 

in the monograph (Timoshenko, 1948) the same 
value is 510136,1 −∗

⋅=
СТ

w . Thus, we can assume 

that the use of a monomial approximation of 
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unknowns in the solution of this problem is 
justified. Figure 2 shows the dependence of the 
dimensionless deflection of the center of the plate 

510⋅

∗

w  from the square of the relative velocity of 
the load 22 /

КР
VV . When 

КР
VV → deflections 

increase without limit. The dashed line shows the 
dependence of the dimensionless deflection of 
the center of the plate on the square of the 
relative velocity for the hinged plate, given in 
(Antufev et al., 2017). For a plate with one 
stringer, in the monomial approximation, further 
neglecting the gravitational component of the 
load, the square of the critical velocity of its 

motion will be 1111
2

/ mkV
КР

= , where the 

stiffness and inertia coefficients are calculated 
from the Equation 16 (Equation 23). The first term 
in this formula coincides with the value of the 
square of the critical velocity for the smooth plate 
(Equation 5). Consequently, the presence of even 
one stringer leads to a sharp increase in the 
critical load velocity. 

CONCLUSIONS: 

The dynamic behavior of stiffened plates is 
devoted to a sufficient number of works, the main 
ones of which can be considered the following, 
but there are not so many works related to the 
action of the movable load. In this paper, we 
studied the dynamic behavior of a rigidly clamped 
plate reinforced with stiffeners under the action of 
the movable load. It is shown that the use of a 
monomial approximation of unknowns in solving 
such problems is justified. Determined that the 
dependence of the dimensionless deflection of 
the plate center on the square of the relative 
velocity for a rigidly clamped plate differs 
significantly from the analogous dependence of 
the hinged plate. 

It is determined that the nature of the 
deformation of a cylindrical shell under non-
axisymmetric high-speed loading significantly 
depends on the rate of load application. Under 
quasistatic loading, the characteristic 
manifestation of nonlinearity of the 
inhomogeneous stress-strain state of the shell is 
a smooth restructuring of the shape of the bend 
in the loading process, while preserving the 
known behavior patterns of the shells under static 
loading depending on the degree of non-
uniformity of the load. Dynamic loading is 
characterized by the maximum sensitivity of the 
structure to the magnitude of the impact velocity, 

the change in the parameters of the structure and 
the localization of the pressure profile. It has 
been established that during high-speed loading 
it remains during the entire time of deformation of 
the similarity of the flexural form, fixed by plastic 
deformations. This type of deformation is 
distinguished by the insensitivity of critical loads 
to the degree of heterogeneity, the approximation 
(with increasing degree of heterogeneity) of the 
level of critical loads to a certain asymptote, a 
significant increase, compared to static loading, 
the level of critical pressures. 
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Figure 1. Conditional scheme of the clamped plate and the inertial load of intensity 
 

 
 

Figure 2. Dependence of the dimensionless deflection of the plate center 
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